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The flow of thin liquid films between rollers 

By E. PITTSAND J. GREILLER 
Iteaearch Laboratories, Kodak Ltd, Wealdstone, Harrow, Middlesex 

(Received 7 February 1961) 

When rollers, placed horizontally and side by side so that each is half immersed 
in a tank of liquid, rotate in opposite directions, liquid is carried through the gap 
between them and divides to form a sheet over each roller. A t  low speeds the 
sheets are of uniform thickness across the width of the rollers, but at higher 
speeds they are regularly ridged owing to alternate increase and decrease in 
thickness. Preliminary observations led to  the development of an approximate 
theoretical treatment of the even-flow rhgime and the critical conditions when 
the ribbed flow is about to begin. Results of this work are in full agreement with 
detailed experimental results. 

1. Introduction 
The production of uniform thin films of liquid as a coating is a frequent in- 

dustrial requirement, and various methods are used for the purpose. It is a com- 
mon observation that many of the methods which involve spreading or rolling 
of the liquid often give rise t o  very uneven or ribbed layers. It appeared that in 
spite of the widespread occurrence of the phenomenon, little work had been 
published relating to it, and no adequate explanation had been given. Accord- 
ingly, extensive experimental and theoretical work was carried out in these 
laboratories on a model consisting of two cylinders placed with their axes parallel 
adti level with the surface of liquid in a tank. Each roller is thus half immersed 
in liquid. On rotation of the rollers in contrary motion, liquid is drawn up through 
the narrow gap separating them, and divides to form a sheet over each, returning 
to the bulk of the liquid. Using this apparatus it hrts been possible to make many 
determinations of the position of the meniscus where the liquid divides as a func- 
tion of the physical and geometrical variables, and to observe the conditions in 
which the even film of liquid over each roller changes into a regularly rippled 
sheet. A description of these and other more detailed observations are presented 
in this paper together with an approximate theoretical treatment of the problem 
which satisfactorily accounts for all the observed phenomena. 

A t  a late stage in our work we were informed of a similar problem being studied 
by Dr J. R. A. Pearson, which we discussed with him. The work has recently 
appeared in an interesting paper (Pearson 1960) in which the spreading of liquid 
over a plane surface by means of a wedge-shaped spreader is discussed. Pearson 
was able to account for the appearance of regularly spaced crests and troughs in 
the emergent thin film running parallel to the direction of motion of the spreader. 
The observed and calculated periodicities of the ripple were in fair agreement. 
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His discussion of the problem is, however, in some respects incomplete, since it 
does not permit the quantitative prediction of the conditions in which the 
uniform flow, stable for sufficiently low speeds of spreading, changes to the rippled 
form. Other approximations are made which obscure certain important feature8 
of the flow in the region of the meniscus. 

We have been able to account for all the main features of .the flow in our 
experiments, together with the quantitative prediction of the critical conditions. 
The treatment of the problem divides naturally into two parts: the even flow 
regime before the appearance of ripples, and the criticd conditions in which 
ripples first appear. 

2. The even flow regime 
2.1. Experimental methods 

The arrangement of the rollers in the tank of liquid and their direction of rotation 
are shown in figure 1. The tank was made of Perspex to allow observations to be 
made through the sides. Two sizes of roller were used, with known diameters, 
nominally 1 in. and 2 in. The gap separating the rollers at their closest approach 
(the nip) could be set from zero to 1 mm with an accuracy and uniformity within 

FIGURE 1. Arrangement of rollers in the liquid. 

0.016mm. Because these gaps were 80 narrow, great care had to be taken in 
making the rollers to ensure that each was a true cylinder accurately concentric 
9 t h  its spindle. Variation in the width of the gap along its length was about 
- + 6 % in the smallest gaps but much less in the larger gaps. Each roller rotated at 
the same speed, the maximum rate of rotation being about 76r.p.m. The vis- 
cosity of the liquids used was in the range 0.25-6 poise. During the course of an 
experiment temperature changes occurred and allowance waa made for the 
consequent change in viscosity when calculating results. When glycerin was used, 
changesinviscosityalsooccurredowing to the absorption of moisture from the air. 
These were known and kept as small aa possible. 

It became apparent that surface tension could not be changed in a controlled 
way by using surface-active agents, owing to the rapid rate of expansion of the 
liquid surface in the region under examination. It was therefore necessary to urn 
liquids having intrinsically different surface tensions. 

The basic flow pattern was obtained from photographs taken through the 
transparent walls of the tank along a direction parallel to the axes of the rollers. 
Streamlines were made more distinct by the introduction of very small air 
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bubbles. Other photographs were taken showing the profile of the meniscus at 
various speeds, together with its position between the rollers. In  addition many 
determinations of meniscus position were made with a travelling microscope. 

Suficiently accurate measurements of the volume of liquid carried through 
the gap presented great difficulties. The method finally adopted was to collect 
and weigh the liquid carried by one roller using a tray with a rubber scraper blade. 
Edge effects were eliminated by using trays of different widths. The scraper 
aould not be made to remove all the liquid from the roller surface and the amount 
left under different conditions was obtained by absorbing it on filter paper and 
weighing. 

(4 (b) 
FIGURE 2. (a) Streamlines when rollers are totally immersed. ( b )  Streamlinoa when 

rollers are partially immersed. 

2.2. Experimental observations 

It is of interest to compare the flow pattern when the rollers are completely im- 
mersed in the liquid with that when they are half immersed. The streamlines 
are indicated in figures 2a and b, in which S indicates a stagnation point (where 
the fluid velocity is zero). It will be seen that the flow patterns on the ingoing 
aide are alike, but on the outgoing side the presence of the meniscus causes two 
areaa of circulatory flow, and three extra stagnation points in addition to the 
centres of the vortices. 

By measurement of the many photographs taken, it haa been established that, 
to a very close approximation, the meniscus is parabolic over a large part of its 
profile. 

3-2 
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For a given gap between the rollers the position of the meniscus may be speci- 
fied by metmuring the ratio, a,, of the width of the channel at the lowest point of 
the meniscus to the gap width. In  figure 3 the crosses show the value of a, for B 

gap width of 0-020 cm as a function of log ( p U / T ) ,  where ,a and T are the viscosity 
and surface tension of the liquid, and U is the surface speed of the rollers. Two 
liquids were used, having surface tensions of 47 and 65 dyneslcm and viscositiea 
were in the range 04-5-6 poise. In  each experiment the speed wm varied by B 

factor of nearly five, viscosity and surface tension remaining constant. It will 
be seen that as the speed is increased, a, decreases, i.e. the meniscus moves in 
towards the nip. Similar results are found for other gap widths. 

4 1  I 

- 1.5 - 1.0 - 0.5 

log P U P  

FIGURE 3. The position of the meniscus: + experimental observations; 
- theoretical curve. 

Elementary considerations suggest that if 2h is the width of the nip, the quan- 
tity of liquid carried through per second per unit length of the roller will be 2hUh, 
where his a number of order of magnitude unity. As has already been mentioned, 
the experimental measurement of the quantity carried through, and hence the 
determination of h in given flow conditions, was difficult to achieve with sufficient 
accuracy. Liquid escaped coXection, and the accuracy with which the smallest 
gaps could be set was probably not better than & 10 %. For a range of flow con- 
ditions the mean of the observed values of h was 1.33, individual readings ranging 
from 1.38 to 1-26. A slight decrease in h with increasing speed is indicated by the 
results. 

In  the next section we shall give an approximate theoretical account of this 
type of flow, and in 52.4 compare theory with the experimental results just 
described. 

2.3. Theory 

The flow pattern in the region of the meniscus, ;t8 revealed by experiment, is 
complicated and an exact theoretical treatment of the problem appears extremely 
difficult. Accordingly, we shad present a treatment which although approximate, 
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G 

In principle, it should be possible to deduce both the form and the position of 
the free liquid surface from purely theoretical considerations. This degree of 
generality will not be attempted here. Instead, we shall make use of the experi- 
mental observations that the meniscus has a parabolic profile, and find theoretic- 
ally its size and position along the axis of symmetry. 

First, we shall ignore the presence of the meniscus and calculate the flow in 
the narrow part of the channel. It will be convenient to use the co-ordinate 
system shown in figure 4. The z-axis is along the axis of symmetry, the y-axis 
is in the plane through the axes of the rollers which are parallel to the z-axis. 
There is no component of fluid velocity in the z-direction. Let OQ equal h (half 
the gap width) and let the radius of the rollers be R.  A brief preliminary investiga- 
tion suggests that new variables 5 and 7, defined by the equations 

x = ((Rh)),  y = 7 h  ' (2.1) 

S = h/R (2.2) 

are suited to this problem. We can then use the ratio 

as a small parameter (of the order 5 x 10-3) in the development of the solution. 
If the surface of the roller is defined by the equation 

elementary geometry shows that 
7 = a(<), (2.3) 

(2.4) a = 1 + p+ O(6).  
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If the component of velocity in the z-direction is written Uu, that in the y-direc- 
tion 6)Uv, where U is the velocity of the surface of the roller, and 

P = phf /pUH,  (2.6) 

where p is the pressure and p the viscosity of the liquid, the hydrodynamic equa- 
tions become (neglecting inertia terms and the force due to gravity) 

a p  a2u - = - +0(6), 
aTa 

ap 
- = O(6).  
a?l 

The continuity equation is - -  

At the roller surface the liquid velocity must equal that of the roller. Hence 
when 7 = u 

Also the quantity of liquid per second per unit length crossing a plane perpen- 
dicular to the z-axis and extending to the surfaces of the rollers must be constant. 
If this quantity is 2hUh, then we must have 

u = 1 + O(6).  (2.9) 

h = /;udq. 

If we neglect terns O(S) we find that 

(2.10) 

u =  l+#(u-h)(?y-u~)/cr3 (2.11) 

and 
P = 3ff (7) U - A  d5. 

(2.12) 

We notice that the position of the stagnation point on the axis is given by 

u = 3h. (2.13) 

Equivalent results have also been given by other workers (for example, Banks 6 
Mill 1964 and Hopkins 1957). If the rollers are completely immersed, it is easily 
shown that h must be $, to this degree of approximation. 

We shall nowattempt to describe conditions in the neighbourhood of the menis- 
cus by adding to the above solution terms which are important only near the 
meniscus, and which decrease rapidly elsewhere. 

It is convenient to use cylindrical co-ordinates centred on the focus F of the 
parabolic meniscus, whose latus rectum is 4a  (see figure 4). The distance from the 
nip to the focus is 1. (Both 1 and a will be evaluated theoretically.) The radius 
vector has length ar, where r is dimensionless. If we introduce a stream function 
$, such that the component velocities divided by U are respectively 

(2.14) 
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the Stokes equations are 

end $ must mtisfy the relation 

The equation of the parabolic surface of the meniscus is 

V‘$ = 0. 

r(i +COB e) = 2. 

(2.16) 

(2.16) 

(2.17) 

The boundary conditions are aa follows. The velocity normal to this surface must 
be zero, i.e., on the surface, $ is a constant, which may be put equal to zero 

@ = 0. (2.18) 

Alao, the tangential stress in the liquid must be zero on the surface. If u?, 
end 7M are the stresses defined in the usual way for cylindrical co-ordinates, and 
# ia the angle between the tangent to the surface at a point and the normal to the 
radius vector at the point, then the vanishing of the tangential stress may be 

(2.19) written (u, - g o )  sin 4 COB 4 + 7,(C0s2 4 - sin”) = 0. 

From the equation for the parabola, it  follows that 

4 = 407 (2.20) 

and, from this relation and the definitions of the stresses, the condition for zero 
tangential stress becomes 

(2.21) 

The outward normal component of stress SN is given by 

s, = u,ccOs~ 9 + u,sin= 4 - 27,sin (b cos 4. (2.22) 

Using the above definitions together with the condition (2.19), we find 

(2.23) 

BN must equal the normal stress on the surface due to atmospheric pressure and 
the effect of surface tension T. When the radius of curvature at a point on the 
EU.I&M is calculated, and measuring pressure in excess of atmospheric pressure, 
the condition expressing continuity of normal stress becomes 

(2.24) 

In addition, the resultant velocity at the surface of the rollers must equal U, 
and to ensure the constancy of net flux, $ must be constant there. 

We shall suppose that the solution of equation (2.16) relevant to this problem 
may be written 

T (l+cosO)+ up ~ 2 av, 
pu 24 pu case are  

m - 
@ = ~sinmB(Amrm+Cmrm+a+Bm~-m+Dmr2-m), (2.25) 

1 
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where the coefficients A, and C, are those corresponding to the solution (2.11). 
The remaining terms express the intluence of the meniscus. The pressure is then 

(2.26) 
given by W 

p = - 4,u cosmO [(m+ l )Cmrm + (m- 1) Dmr-,] +c, 
1 

where c is a constant, and equation (2.21) gives 
m 

o = ~as in (m+1)~[m(m+1)~ ,r -m-2+m(m-1)~ ,r -m]  
1 

W 

+xsin(m-  l )O[m(m-  I)A,rm-2+m(m+ l)Cmrm], (2.27) 
1 

where r is defined by equation (2.17). 

the following expressions for the A and C coefficients: 
If c1 is the ratio of the lengths FH to OG, by straightforward methods we fkd 

(2.28) 

where we have defined 

(2.29) 

and neglected all terms O ( p )  and O(S). (Development of the theory confirms the 
experimental result that in caaes of interest 

We have now to determine the B and D coefficients so that the boundary con- 
ditions are satisfied. This problem is made particularly difficult by the compli- 
cated geometry of the surfaces in the neighbourhood of the meniscus. Instead 
of attempting to satisfy conditions exactly at both boundaries we shall take three 
terms which decrease as r increases, and choose the coefficients so that over the 
meniscus the boundary conditions are satisfied for terms of order 0 and O3 in the 
expansion of equations (2.18), (2.21) and (2.24). Since D, may without loss of 
generality be assumed to be zero, we have retained B,, D, and D,, i.e. terms in the 
velocities of order r-l and +. The outcome of other choices has been investigated, 
and it appears that the general result is not greatly affected. In  making this 
approximation the boundary conditions at the surface of the roller are violated. 
However, veryinteresting and useful results can be obtained in spite of this defect. 

Equations (2.18), (2.21) and (2.24) each give two equations corresponding to 
the coefficients of 8 and 8,. These six equations may be solved and after lengthy 
algebra give A,, C,, B,, D, and D, in terms of T/,uU, A,, and C,. Finally, there is 
an expression which in effect relates p and T/,uU, A, and C,. The expressions for 
A,, C, and that involving p may be written after some rearrangement 

3~ = 1 - T/29*3,uU - 2.44@ + 3-28aB( 1 - %K), (2.30) 

01 = (T/56 .4~U+0.59KB)/ [ l -K++.20B(I  - # K ) ]  (2.31) 

K = h/a,, = la/c,Rh, 
a = (a/a,h),, (T = a,(l-Brcose)+O(iY), 

is less than 0.09.) 
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end alq(crl,h) = ( 2 h / a R ) )  [ 0 - 1 4 8 T / p U + 0 . 3 0 ~ ~ +  1*65aP(l -$.)I,  (2 .32)  

where (2 .33)  

end 1+*g = a1(1-/9). (2.34) 

Use of the relation (2 .4)  in evaluating the infinite integral in (2.33) introduces only 
negligible error. 

From these equations we wish to find K ,  a and h for a given value of T / p U .  It 
will be seen that the expression for K involves K on the right-hand side, but since 
these terms are small a f i s t  approximation to K is immediately obtained. Using 
thisandrtssuminghto be$, arough value of al is obtained. Fromequation (2 .31) ,  

0 4  - / 

2 3 4 5 6 7 

(TI 

FIQURE 5. Velum of ulq as a function of ul and the appropriate value of A. 

by ignoring terms involving 8, we next obtain a rough value of a. F'rom our 
knowledge of a1 we can derive a rough value for 2 by geometry, and hence find B 
approximately. This enables a new derivation of K to be made from equation 
(2.30).  The process can be repeated to obtain better approximations. When these 
are obtained, we can calculate the right-hand side of equation (2.32).  The left- 
hand side of this equation is independent of T / p U ,  and may be calculated as a 
function of crl, A and 8. These values are shown in figure 5. Since we know the 
value of the right-hand side of equation (2 .32) ,  i.e. the numerical value of alq, 
and also the value of al we can therefore obtain a new value of A. This can then 
be used to improve the values of K and a. 

From curve A of figure 5 we can find how the value of h changes as a1 changes 
(due to changes in T / p U ) .  These calculations also enable us to find the value of 
a,, corresponding to the cross-section at N. 
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2.4. Cornparison with experiment 

Fn>m these results the value of a, as a function of log ( p U / T )  is known and has 
been indicated by the smooth curve in figure 3. It will be seen that the extent of 
the agreement is very satisfactory. 

Similar agreement is found for other gap widths. The region where the dis- 
crepancy is largest is at small values of co, i.e. high speeds of rotation. This may 
perhaps be because at low speeds the roller surfaces (where boundary conditiom 
are violated) are relatively more distant from the region of the meniscus near 
the axis of symmetry, than when the speed is large. We might then expect that 
incorrect boundary conditions at the rollers would have most effect at high 
speeds. 

Reference to figure 5 shows that as c1 decreams, h also decreases. The sub- 
stantiation of this theoretical change from about 1.34 when g1 = 7, to 1.30 when 
c1 = 4 would require experimental accuracy which could not be achieved without 
completely redesigning the apparatus. Nevertheless, the predicted change is in 
the same direction as the experimental trend. 

3. Critical conditions 
3.1. Experimental observations 

As has already been described in $2.2, an increase in speed of rotation of the 
rollers causes the meniscus to recede towards the nip. When the meniscus is 
close to the stagnation point So (see figure 2 b) ,  the circulatory regions are too 
small to be seen clearly. Any further increase in speed causes a change to take 
place in the flow pattern. In  the region of the meniscus the velocity now has a 
component parallel to the axes of the rollers. The previously smooth sheet of 
liquid over each roller becomes regularly rippled amom its width, with a conse- 
quent regular disturbance of the evenness of the liquid sheets. When fht clearly 
visible, this ripple is of low wave-number (3 or 4 crestslin.) and is constant across 
the whole width of the rollers. With all conditions fixed, the surface remains 
steady, the cross-section of each line being of the same form and wavelength. 
The crests on one roller are directly opposite those on the other. A schematic 
diagram of the appearance of the liquid is shown in figure 6. 

A further steady increase in speed results at first in an increase in amplitude 
only, then, after a slight wandering and merging of the lines, in an increase in their 
wave-number. This new state is again stable over a range of speeds, only changing 
in amplitude. Another transition follows and this cycle is repeated until eventu- 
ally the ripples are very numerous (about 25/ in.). 

It is of interest to measure conditions under which the ripple first appears. This 
has been done for varying speed, viscosity and gap width, and with different 
liquids to investigate the effect of surface tension. It is difficult to judge when 
ripples of very s m d  amplitude are first present, and so, to obtain more consistent 
results, a criterion waa chosen in which the ripples were of sufficient amplitude 
to be unmistakable. 

The results of these observations are shown in figure 7. The product p U R  is 
shown aa a function of Th in conditions under which ripples fist appear. The 
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values of viscosity range between 0.4 and 5.4 poise and the gap varies between 
O.OO6cm (0-002in.) and 0.05cm (0-02in.). Two sets of rollers were used, with 
rndii nominally of 0-5 and 1 in. Two liquids were used, a glycerin-water mixture 

'. 

'\Liquid level 

FIGURE 6. The appearance of ripplea (not drawn to d e ) .  

Th 

FIQURE 7. Critical conditions as determined by experiment. + Glycerin, 2 in. roller. 
' 0  Glycerin, 1 in. roller. x Lactic acid, 2 in. roller. A Lactic acid, 1 in. roller. 

with a surface tension of 66, and pure lactic acid with a surfme tension of 47. It 
will be seen from the figure that when conditions are critical and ripples are first 
recognieably present pURITh 21 62. In $3.3 we shall discuss the reliability of 
this result more fully. Having regard to the experimental difficulties, especially 
the difficulty of deciding on the presence or absence of a ripple, the scatter of the 
experimental results is not excessive. 

From this result it will be seen that the smaller the surface tension of the liquid 
or the smaller the gap, the lower the velocity at which ribbing occurs. Increasing 
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the viscosity of the liquid or the radius of the rollers likewise causes ribbing to 
appear at lower velocities. The effect of surface tension may be strikingly 
demonstrated by allowing ether vapour to collect near the meniscus when ripplea 
are absent. Adsorption of ether causes a large reduction in surface tension which 
is usually sufficient to give rise to the appearance of ripples, because (at fixed 
speed) the critical value of the above ratio has been exceeded. 

3.2. Theory 

The experimental results just described demonstrate the importance of the 
dimensionless ratio pUR1Th in determining the flow conditions. Before giving a 
detailed theoretical explanation, it will be helpful to give an outline of the main 
physical considerations to show qualitatively how this result arises. 

Owing to the curvature of the meniscus, there is a drop in pressure on crossing 
the boundary equal to TI%. The gradient of the pressure (equation (2.12)) near 
the meniscus is given approximately by the equation 

dpldx = 3 , ~  U ( u - A)/a3h2. 

Now imagine that at two different positions across the width of the roller, owing 
to a small perturbation, the menisci cut the axis at different distances x and x + dz 
from the nip. A t  the meniscus farthest from the nip, the pressure drop will be 
less than that at the other site because a has increased. The pressure drop behind 
this meniscus but at a distance x from the nip will therefore be 

- T + [& (;) + $1 ax. 
2a 

Thus, compared with the pressure at the other meniscus, there is a pressure 
difference of 

tending to produce sideways motion of the liquid. If this difference is positive, 
there will be a tendency for liquid to flow towards the point where the meniscus is 
farther out, so that the perturbation may be increased, and hence instability arise. 
We might therefore expect our stability criterion to be 

F'rom equation (2.31) it  will be seen that we may write a = kT/pU. The quantity 
k is approximately constant in the conditions of interest. Assuming k is strictly 
constant, we may evaluate &/ax using (2.29)) and the above criterion for in- 
stability becomes Th * u  1 4  3 0 <  (-) (+) 

U PUR 

after cancellation of common factors. This result shows that pURITh depends 
on u and since this quantity only varies slowly with T / p U ,  we have an indication 
that, at least approximately, pUR/Th is a constant when conditions are critical. 
Evaluation of the constants gives the result that, when conditions are critical, 
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pURITh has a value about 10, which is the order of magnitude of the experimental 
result. This suggests that the above argument is a sound basis for a more thorough 
analysis. 

It wil l  be seen that a vital step in this argument is the use of equation (2.31). The 
plausible hypothesis that the radius of curvature of the surface may approxi- 
mately be put simply proportional to the channel width alone leads by a similar 
argument to the appearance of the group pURh/Th*, which is not in accord with 
experiment. This assumption was however used successfully by Pearson (1960) 
in his discussion of another problem, but it evidently cannot be used here. 

Two important factors have been entirely omitted in the above, viz. the effect 
of curvature of the meniscus in the other plane, and the variation in the amount 
of liquid carried away as a function of meniscus position. In  the following we shall 
consider these additional factors. 

It will be convenient to follow the analysis and notation used by Pearson, 
making use of equation (2.31) at a later stage, so that comparison with Pearson's 
work is easier. We need to know the effect of small changes in the shape of the 
meniscus on the flow pattern. Using the Cartesian co-ordinate system shown in 
figure 4, we shall suppose that the meniscus cuts the (2, 2)-plane in the curve 

x = x,, -I- E cos nz, (3.1) 

where E is a small length whose square can be neglected. Since the meniscus cuts 
the (x, y)-plane in a parabola (latus rectum 4a)  the expression for the pressure 
reduction due to surface tension is found from the sum of the principal curvatures 
of the surface, and is 

T --m2cosnz . (3.2) ) (z'a 
We may find ap/az by the same argument as that used earlier, but using the 
expression (3.2) for the pressure drop. Mter a little manipulation, we find that 

"he effect of this small pressure on the flow pattern may be found by conventional 
perturbation methods. Suppose that the velocities of the liquid in the x- and z- 
directions are increased by the quantities u' and w', where 

EJ'(x) - - 1 cosnz, (5 ) U )  

U -  
_ -  

- = s G ( x )  --1 sinnz. 
W' 

U (5 ) 
(3.4) 

(3.5) 

Both these additional velocities vanish at the surfaces of the rollers. If p' is the 
perturbation of the pressure, the perturbed parts of the equations of motion are 
approximately 
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The continuity of cross-sectional flow implies that 
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By differentiating equations (3.6) and (3.7) and eliminating p‘, we find afhr 
substitution that 

. ,  
and from equation (3.8) 

d - (aF) + nuG = 0.  
dx 

Eliminating F from these equations gives 

where primes denote differentiation with respect to x (cf. Pearson). 
From equations (3.7) and (3.3) we find that 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where Go is the value of G(Z - a). If we write 

a = kT/,uU (3.13) 

then k is defined by equation (2.31) and varies only very slowly with TIpU. 
Using equation (3.13) and the definition of c1 (equation (2.4)) to find a’, equation 
(3.12) may be written 

(3.14) 

where 0 = (pUR/Th)), N = Rhn2, (3.15) 
and al h and a0h are half the width of the channel at the focus and nose of the 
meniscus, respectively. It will be noted that 0 is the parameter whose value was 
found from experiment to be constant when conditions are critical. 

The amount of liquid flowing in the x-direction due to the perturbation is 

h u’dv = - 4 UhuFa cos nz. (3.16) 

If the system were in equilibrium, the change in h corresponding to the changed 
position of the meniscus would be scosnzdhldx so that the amount of liquid 
removed would be i n c m e d  by an amount Uhe COB nzdhldx. If the latter is less 
than the expression (3.16) we should expect the perturbation to be increased. 
Hence the condition for instability is 

dhldx < -&F. (3.17) 

Replacing F in terms of a, the condition may be written 

fo” 

(3.18) 

To obtain numerical resulta, we must solve equation (3.1 l ) ,  using the condition 
(3.14), and substitute for Go in the inequality (3.18). The vdue of dhldx may be 



The $flow of thin liquid film between rollers 47 

derived from the graph shown in figure 6. The outline of this work is indicated in 
the Appendix. The h a 1  result is 

(uo- 1)) d h  
u1 da, 4*24( 1 + /3)4 

where (3.20) 

For convenience in the discussion of the condition for instability we write 
(3.19) in the form ( A )  < ( B ) ( C ) .  

FIQUXE 8. Vdum of the terms (B) ,  ( C ) ,  and (B) ( C )  as functions of N. 

3.3. Comparison with experiment 

Numerical results are obtained from equation (3.19) in the following way. For 
a given value of 0 we may find the values of u1 and a, and hence the value of (A). 
The value of (B) is a function which decreases linearly with increasing N, a 
measure of the ripple wave-number. The quantity (C) increases aa N increases. 
In figure 8 values of (B), (C) and the product (B) (C) are shown as functions of N, 
for the case T/pU = 8 and h/R = 0.004. For given 0 aa N varies there is a 
particular value of N which makes (B) (C) a maximum. We must find the value 
of 0 such that the maximum value of the product just equals (A). 

The results of these calculations are shown in figure 9, where curve M shows the 
maximum value of (B) (C) and curve A the value of (A ) . For values of 0 less than 
6.3 the maxima are all less than (A), i.e. conditions are always stable. For values 
of 0 greater than 6.3, conditions are unstable, i.e. for (pUUR/Th) greater than 28. 
The experimental value for this ratio is 62, which is known to be too high owing 
to difficulties in detecting the onset of ribbing (see next section). 

The value of n at the critical point is 3-48, which means that the distance 
between ridges is 1.8cm. Experimental observations showed that across the 



48 E.  Pitts and J .  Greiller 

5 in. roller there were approximately 17 crests, so that the observed distance waa 
0-75 cm. 

FIQURE 9. Theoretical determination of the critical value of 0. 

4. Discussion 
Thegeneral agreement between theory and experiment for the even flow 

regime and also for the critical conditions at the transition shows that all the 
most important features have been satisfactorily explained. In  view of the 
complexity of the problem and the approximations in the theoretical treatment 
the extent of the numerical agreement is also very satisfactory. A closer examina- 
tion of the comparison between theory and experiment will show in more detail 
the extent of the agreement and what shortcomings still remain. 

Reference to figure 3 shows that the theory is moderately successful in pre- 
dicting the position of the meniscus, but the curvature of the theoretical line is 
not in complete agreement with the experimental points. In  particular, in con- 
ditions in which the meniscus approaches most closely to the nip the theory is 
less satisfactory. Figure 5 shows that h depends on the position of the meniscus 
and this result is in qualitative agreement with experiment, although as already 
explained the experiments were of only sufficient accuracy to enable a semi- 
quantitative comparison to be made. The dependence of 01 on (TIpU) given by 
equation (2.31) is a result' of great importance, which receives its confirmation 
in the theory of the critical conditions. 

All these results have been obtained from a treatment that involves many 
approximations. It wil l  be remembered that boundary conditions have only 
been satisfied at the meniscus, and even then only approximately and in a region 
close to the axis of symmetry. The fluid velocity at the surface8 of the rollers does 
not have the correct value. Nevertheless, in spite of these shortcomings, 
important results have been obtained which account for the main features 
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of the even flow rhgime, and are essential for the explanation of the transition 
to the ribbed flow pattern. 

"he explanation of the physical basis of the change in flow conditions given in 
Q3.2 gives results which are qualitatively in complete agreement with the 
experiment. In  this explanation the proportionality between a and (T/pU) 
established by the theory of the even flow rhgime is of decisive importance. 
Without these results, the role played by the ratio (pUR/Th) cannot be explained. 
The quantitative prediction of critical conditions is obviously a much more 
exacting requirement but here again the theory is fairly successful. In  this case 
it must be remembered that experimental difficulties in recognizing reliably the 
first appearance of uneven flow are considerable. There is no doubt that, with 
more elaborate methods of viewing the surfaces of the liquid sheets over the 
rollers, it  would have been possible to detect uneven flow for a value of (pUR/TA) 
substantially lower than 62. A factor as large as 2 could possibly arise from this 
muse alone. Without any added refinements of viewing, it was always possible to 
observe uneven flow at speeds lower than those finally recorded in our experi- 
ments. In  this region the unevenness was of such small amplitude that an ob- 
wrver could not consistently judge its true onset, but selected values of the 
apeed varied by almost a factor of 2. A particular small amplitude was therefore 
adopted as a standard, the use of which made consistent results possible. 

For this reason, the difference between Oa from experiment (62) and from 
theory (28) is in the expected direction and is no doubt largely to be attributed 
to this experimental difficulty. 

On the other hand it is likely that the theory is in error owing to several 
approximations. During the course of the numerical calculations it was obvious 
that comparatively small changes in certain terms could have a large effect on 
the value of the product (B) (C). The expression for ap/ax near the meniscus is 
probably incorrect and the change in A for the perturbed meniscus is derived from 
the variation of h with position when conditions are in equilibrium. These may 
both be important sources of error. 

With these facts in mind, it is perhaps unreasonable to expect closer numericd 
agreement. The successful explanation of all the qualitative experimental results 
and the approximate quantitative agreement between theory and experiment 
establishes the general adequacy of the treatment of the problem. 
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Appendix 

variable 6 defined by equation (2.1) and put 

Then substitution in equation (3.11), together with the definition of a from 

We require an approximate solution of equation (3.11). Let us introduce the 

= Ha*.  (A. 1) 

- - 
equation (2.4), gives daH 

where N is defined in equation (3.15). An approximate solution of equation 
(A. 2) may be obtained by replacing the term in square brackets by its value at 
the nose of the meniscus. The result may then emily be improved by successive 
approximations. 

We shall therefore consider 

where 

and measure f from the point where the meniscus cuts the axis of symmetry. 
The perturbation must vanish as the nip is approached, i.e. as 6 tends to - co, 
so the solution of equation (A. 3) may be written 

The condition in equation (3.14) gives the values of B immediately, and substitu- 
tion in equation (3.18) results in the inequality 

H = Be&. (A. 6 )  

then 
dh dh 
- = 2*(1 +b) (ao- I)*- at  &TI ' 

and the condition for instability may be written 
(ao- l)* dh 
a1 4-24( 1 +b)* 

By developing the right-hand side of equation (A. 2) aij a power seriea in 6 further 
approximations may readily be derived. We shall omit them here, since their 
effect on the expression (A.6) is quite small, and moreover equation (A.2) in 
any caae~ is only valid in the immediate vicinity of the perturbed meniscus, so 
that extra terms are of very doubtful significance. 


